Sensores de proximidade optoeletrónicos

Os sensores de proximidade são utilizados em circuitos elétricos em que o contacto com os orgãos em movimento não se pretende que seja direto. São constituídos por uma parte sensora e por uma unidade de processamento de sinais binários. Atuando por aproximação, comutam silenciosamente sem desgaste dos contactos e sem força de acionamento. Sendo, hoje em dia, cada vez mais utilizados na técnica de controlo e acionamento.

1. CARATERÍSTICAS CONSTRUTIVAS DAS FOTOCÉLULAS

As células fotoelétricas são constituídas por um elemento emissor de luz e por um recetor de luz, que podem estar montados na mesma carcaça ou em diferentes carcaças. Além de equipamentos e circuitos eletrónicos, as fotocélulas têm geralmente lentes, filtros luz, etc. A Figura 1 mostra, usando como exemplo uma fotocélula de barreira, os elementos que compõem uma fotocélula.

Lente do emissor **Emissor** Circuito do emissor Diafragma Elemento fotosensível Lente do recetor Recetor Circuito Fixo ótico do recetor

Figura 1. Estrutura de uma fotocélula de barreira de luz.

Flementos do emissor

Circuito do emissor

Muitas fotocélulas existentes no mercado não funcionam com luz contínua, mas com luz modulada. Em sistemas de luz modulada o circuito emissor envia impulsos de corrente à fonte de luz para obter impulsos de luz. Pode-se, deste modo, aplicar maior potência instantânea à fonte de luz e, desta forma, conseguir maior alcance. Assim como, o recetor pode ser mais sensível, porque os sinais alternados são mais fáceis amplificar que os contínuos. Além disso, o uso de luz modulada facilita a colocação de fotocélulas muito próximas sem que interfiram umas com as outras.

Fonte de Luz

As fotocélulas podem trabalhar com luz visível ou luz infravermelha. Muitas trabalham com luz infravermelha porque o intervalo do comprimento de onda correspondente é o que obtêm maior potencia e rendimento. No entanto, a utilização da luz visível favorece o alinhamento da fotocélula.

As fotocélulas já não utilizam as lâmpadas incandescentes como fonte de luz por causa da sua curta vida, o seu baixo rendimento e a dificuldade que o recetor tem em distinguir a sua luz da do meio ambiente.

Lente do emissor

Uma vez que a fonte de luz emite uma radiação que se propaga em todas as direções, coloca-se uma lente e uma fonte de luminosa que está localizada no foco da mesma. É assim que os raios de luminosos do dispositivo emissor saem paralelos ao eixo ótico da lente que constitui o eixo ótico do emissor.

Diafragma do emissor

A fim de aumentar a característica pontual da fonte de luz e, assim, conseguir uma maior focagem do feixe, muitas vezes é colocado um diafragma entre a fonte de luz e a lente do emissor.

Elementos do recetor

Lente do recetor

Para aumentar a sensibilidade do recetor utiliza-se uma lente que concentra o feixe de luz, com origem no emissor, no elemento fotossensível (Figura 1). O eixo ótico da lente é o eixo ótico do recetor que, nas fotocélulas de barreira, deve coincidir com o emissor para que os raios de luz provenientes deste incidam corretamente sobre o elemento fotossensível do recetor (Figura 2).

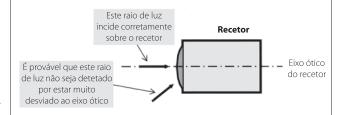


Figura 2. Efeito do desvio do ângulo de incidência da luz em relação ao eixo

Elemento fotossensível

Quando a luz incide sobre este o valor de alguns de seus parâmetros caraterísticos são modificados. Os dispositivos eletrónicos fotossensíveis mais utilizados são fotodíodo (*Photodiode*), o fototransístor (*Photransistor*), o fotodarlington (*Photodarlington*), o fototirístor controlado de silício conhecido como LASCR (sigla para *Light Activated Silicon Controlled Rectifier*). No passado também foi utilizado fotoresistente conhecido como LDR (sigla de *Light Dependent Resistor*).

Circuito recetor

O circuito do recetor amplifica o sinal elétrico gerado pelo elemento fotossensível e estabelece o sinal de saída a partir deste. As células fotoelétricas que têm a capacidade de evitar a interferência mútua trabalham com luz modulada (pulsado) e nestas o circuito recetor ativa a saída, se a frequência dos impulsos recebidos coincide com a frequência dos impulsos enviados pelo emissor.

Diafragma do recetor

O diafragma limita o ângulo de receção para evitar, sempre que possível, a luz que não é proveniente do emissor. No entanto, esta medida não evita o problema aquando da existência de uma fonte de luz localizada no exterior do sensor e situada próxima do emissor. Para evitá-lo é necessário a utilização de filtros óticos.

Filtro ótico

Impede a passagem de componentes do espetro de luz provenientes do meio ambiente, suscetíveis de causar interferências, e só deixa passar a luz proveniente do emissor.

2. CARATERÍSTICAS TÉCNICAS DAS FOTOCÉLULAS

As principais características técnicas dos diferentes tipos de células fotoelétricas são:

Histerese

A fotocélula tem histerese (*Hysteresis*) quando a posição do objeto em que esta está ativa, não corresponde à posição em que está desativa. A distância entre as duas posições é também conhecida como distância diferencial. A histerese pode ocorrer quando o objeto se desloca em relação ao eixo ótico (movimento axial) da célula fotoelétrica (Figura 3) ou quando se faz transversalmente ao eixo ótico.

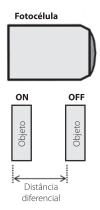
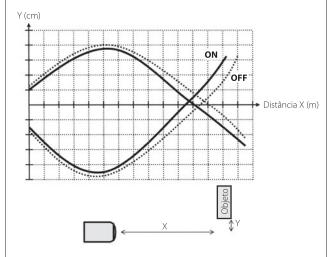



Figura 3. Histerese de uma fotocélula quando o objeto se move na direção axial.

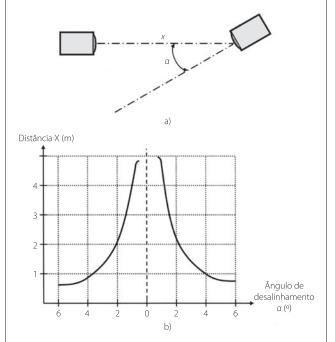


Figura 4. Histerese de uma fotocélula quando o objeto se move transversalmente

No primeiro caso, a histerese é normalmente especificada em termos absolutos ou como uma percentagem da distância de deteção máxima. No segundo caso é comum anexar um gráfico como se mostra na Figura 4, onde a linha continua representa o ponto em que o sensor se ativa quando se aproxima do objeto e a linha descontínua, representa o ponto em que o sensor se desativa quando se afasta do objeto.

Desalinhamento angular

O desvio angular ou ângulo direcional é caraterística típica das fotocélulas do tipo barreira ou retrorrefletoras (Figura 5 a). Indica o valor do ângulo a que pode ser rodado o eixo ótico do emissor, do recetor ou do espelho sobre o alinhamento perfeito. Como é mostrado na Figura 5 b, a distância de deteção diminui com desalinhamento angular.

Figura 5. Ângulo direcional: a) Desalinhamento angular entre o emissor e recetor; b) Relação entre o ângulo máximo de desalinhamento angular admissível e a distância.

O excesso de ganho

O circuito do recetor de uma fotocélula ativa ou desativa a saída de acordo com o sinal que recebe do elemento fotossensível do recetor que está acima ou abaixo de um determinado nível limite. Quando as condições de trabalho de uma fotocélulas são ideais (lentes e ambiente limpo, eixos perfeitamente alinhados, objeto de deteção padrão, entre outros) este sinal excede o nível limite com uma certa margem, que é o que permite que a fotocélula continue a funcionar corretamente quando as condições não são ideais. O excesso de ganho ou ganho excedente (Excess gain) é definido como o nível sinal presente no recetor em condições ideais. O limite dá uma ideia da capacidade que tem a fotocélula de superar as perdas sinal e portanto, por exemplo, quanto mais sujidade é esperada num dado ambiente mais excesso ganho deve ser exigido à fotocélula. Como orientação pode-se indicar os valores que se deve ter de excesso ganho em função da sujidade do meio ambiente:

- Ambiente ligeiramente empoeirado (> 5);
- Ambiente empoeirado, ambiente poluído, luz de neblina (> 10);
- Ambiente extremamente poluído, névoa e vapores (> 50).

O excesso de ganho varia com a distância de deteção da fotocélula e portanto pode-se representar num gráfico semilogarítmico como o que é mostrado na Figura 6.

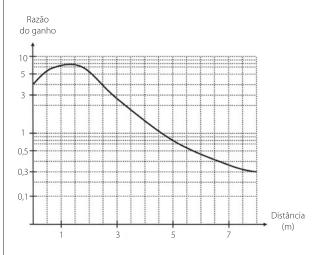
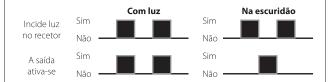


Figura 6. Relação entre o excesso de ganho e distância máxima de deteção.

Esta figura representa o valor do excesso de ganho de uma fotocélula que só funciona em condições ideais (razão igual a 1), quando a distância do objeto é aproximadamente de 5 metros. O valor do excesso de ganho é máximo quando a distância entre a fotocélula e o objeto é de 1 metro. De acordo com os valores do excesso de ganho anteriormente indicados, esta fotocélula só deteta o objeto num ambiente ligeiramente empoeirado quando está colocada a uma distância próxima de 1 metro.


Iluminação ambiente

Indica a luz ambiente máxima que o recetor pode receber sem que resulte num mau funcionamento do sensor. Normalmente, os valores para a luz solar são fornecidos para o tipo de lâmpada mais desfavorável, que costuma ser a incandescente. Os valores típicos da luz ambiente permitida são de 10 000 lux para iluminação solar e 3000 lux para as lâmpadas incandescentes.

Ativação da saída

As fotocélulas podem ter dois modos de funcionamento segundo a sua saída ficar ativa quando o recetor recebe luz ou quando não recebe luz (na escuridão) tal como é mostrado graficamente na Figura 7. A seleção do modo de funcionamento pode ser feito de diferentes formas:

- Usando um comutador;
- Alterando a polaridade da alimentação;
- Utilizando um quarto fio que pode ser ligado à alimentação positiva ou negativa da alimentação.

Figura 7. Modos de funcionamento de uma fotocélula segundo a saída: fica ativa com luz ou na escuridão

Entrada de autodiagnóstico

A entrada de autodiagnóstico ou de teste (se houver) serve para verificar o correto funcionamento da fotocélula. Esta entrada verifica o funcionamento quando o recetor recebe luz. Sob estas condições, o feixe de luz é interrompido por desativação da entrada de teste e o estado da saída muda se a fotocélula funcionar corretamente.

Funções de temporização

Algumas fotocélulas incorporam funções de temporização na variável de saída. O valor de temporização é independente do tempo de resposta e pode ser ajustado externamente, por exemplo, mediante um potenciómetro e, geralmente, varia entre alguns décimos e alguns segundos.

Indicadores luminosos

Algumas fotocélulas têm luzes indicadoras. Normalmente são díodos emissores de luz (LEDs) que indicam o estado da fotocélula ao operador humano. Existem vários tipos de indicadores:

Indicador de Detecção

Acende-se quando o recetor deteta luz.

Indicador de funcionamento

Acende-se quando se ativa ou desativa a saída e depende se fotocélula é ativa quando recebe luz ou escuridão. Assim, difere da deteção quando a fotocélula tem funções de temporização.

Indicador de estabilidade

Acende-se quando o nível de luz recebido pelo recetor está acima de um nível limiar que é considerado um nível de luz estável e também quando está abaixo de um nível estável de escuridão.